How do you find the integral of ##(t)sec^2(2t)dt##?

Use . Remember that ##tantheta=sintheta/costheta##.
Let ##f(t)=t## so that ##f'(t)=1##.
Let ##g'(t)=sec^2(2t)## so that ##g(t)=1/2tan(2t)##.
Hence

##inttsec^2(2t)dt##
##=t/2tan(2t)-1/2inttan(2t)dt##
##=t/2tan(2t)-1/2intsin(2t)/cos(2t)dt##
##=t/2tan(2t)+1/4int(-2sin(2t))/cos(2t)dt##
##=t/2tan(2t)+1/4ln(cos(2t))+C##

Posted in Uncategorized

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>